5. Let $x = \frac{p}{q}$ be a rational number, such that the prime factorisation of <i>q</i> is not of the form of $2^n 5^m$, where <i>n</i> , <i>m</i> are non-negative integers. Then, <i>x</i> has a decimal expansion which is non-terminating repeating	4. Let $x = \frac{p}{q}$ be a rational number such that the prime factorisation of q is of the form $2^n 5^n$, where n, m are non-negative integers. Then, x has a decimal expansion which terminates.	Theorems 1. Let <i>p</i> be a prime number. If <i>p</i> divides <i>a</i> ² , then <i>p</i> divides <i>a</i> , where <i>a</i> is positive integer 2. If <i>p</i> is prime, \sqrt{p} is irrational $\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}$ etc are irrational decimal expansion terminates. Then <i>x</i> can be expressed in $\frac{p}{q}$ form, where <i>p</i> and <i>q</i> are coprime, the prime factorisation of <i>q</i> is of the form 2 ⁿ 5 ^m where <i>n</i> , <i>m</i> are non-negative integers.
		For any two positive integers, HCF $(a, b) \times LCM$ $(a, b)=a \times b$ For example $a = pq^2$ $b = p^3q$ HCF $= pq$ LCM $= p^3q^2$
		Fundamental Theorem of Arithmetic Every composite number can be expressed as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur. Composite Number $x = p_1 \times p_2 \times p_3 \times \times p_n$, where $p_1, p_2,, p_n$ are prime numbers

ZEMAAF YADMEM